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Abstract
In superconductors with large values of the Ginzburg–Landau parameter κ ,
exposed to magnetic fields close to the upper critical fieldHc2, the magnetic field
is practically homogeneous across the sample and the density of supercurrents
is negligibly small. In this case, there is no obvious reason for the formation
of Abrikosov vortices, characteristic for the well known mixed state. We
consider an alternative model for describing the mixed state for κ � 1 and
magnetic fields close to Hc2. We argue that with decreasing magnetic field the
traditional vortex structure is adopted via a first-order phase transition, revealed
by discontinuities in the magnetization as well as the resistivity.

(Some figures in this article are in colour only in the electronic version)

It is commonly accepted that the mixed state of a type-II superconductor is characterized by
the penetration of an external magnetic field into the sample along quantized vortex lines or
vortices. The spatial extent of the superconducting order parameter ψ(r) near a vortex axis is
determined by circular currents flowing around the vortex line. The velocity of the relevant
charge carriers, i.e., the Cooper pairs, diverges at the centre of the vortex line (see, e.g., [1]),
thus reducing the superconducting order parameter progressively until it vanishes on the vortex
axis. In most cases the vortices may thus be considered as thin normal filaments embedded in a
superconducting environment. A completely different situation may, however, be established
in superconductors with a Ginzburg–Landau (GL) parameter κ � 1. If the applied magnetic
field is close to the upper critical field Hc2, the distance between adjacent vortex cores is much
smaller than the magnetic field penetration depth λ(T ). In this case, there is practically no
expulsion of the magnetic field from superconducting regions and the density of shielding
currents is negligibly small. These circumstances are naturally unfavourable for the formation
of common Abrikosov vortices and hence the character of the mixed state in magnetic fields
close to Hc2 may be very different from that adopted at lower fields.

In this letter we consider that in magnetic fields close to Hc2, the natural alternative to
the conventional vortex structure is the formation of superconducting filaments, embedded in
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Figure 1. The radial variation of (a) the normalized order parameter ψ(r) and (b) the magnetic
field for different values of H0/Hc2. ξ(T ) = λ(T )/κ is the GL coherence length.

the matrix of the normal metal. The properties of such superconducting filaments may be
analysed by numerically solving the GL equations3. First, we consider a single cylindrical
superconducting filament in an infinitely extended normal metal. The magnetic field inside
the normal metal is oriented parallel to the filament and its value is set to H0 < Hc2. For the
numerical analysis we have chosen cylindrical coordinates (r, φ, z) with the z-axis parallel
to the filament and r = 0 at its centre. The GL equations for an infinitely long cylindrical
filament
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d2ψ

dr2
+

1

r
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)
+ (A2 − 1)ψ + ψ3 = 0 (1)

and
d

dr

(
dA
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+
A

r

)
= Aψ2 (2)

may thus be solved in one dimension, with all quantities depending only on the radial coordinate
r . Here, ψ is the superconducting order parameter normalized by its equilibrium value in a
bulk superconductor; A is the vector potential of the magnetic field expressed in units of√

2Hcλ(T ), where Hc is the thermodynamic critical field. The coordinate r is measured in
units of λ(T ).

The boundary conditions are set at the centre of the filament (r = 0). For the
superconducting order parameter ψ(r), we have dψ/dr|r=0 = 0 and ψ(0) = const. For
the vector potential A(r), we have A(0) = 0 and curl A|r=0 = H(0), the value of the
magnetic field at the centre of the filament. We have checked that the solutions with A(0) = 0,
equivalent to a vanishing supercurrent at r = 0, correspond to a minimum of the free energy.
By integration of the GL equations with these boundary conditions, we obtain ψ(r), A(r) and
the distribution of the magnetic field H(r) around the filament. We also calculated the Gibbs
free energyFf il of the filament per unit length. For a single filament, Ff il reaches its minimum
if, at the boundary with the normal metal, the order parameter vanishes with a zero derivative,
i.e., ψ(r) → 0 and dψ/dr → 0 for r → ∞.

The calculations have been made for three values of κ: 10, 30, and 100. Figure 1(a)
shows the calculated profiles of the normalized superconducting order parameter ψ(r) for one
filament and, in figure 1(b), corresponding profiles of the magnetic field have been plotted.
For all κ-values between 10 and 100 and H0/Hc2 � 0.3, these profiles are independent of κ .
3 The calculation procedure is described in [2]. The only difference is that here we use the GL equations written in
cylindrical coordinates.
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Figure 2. Different parameters of a single superconducting filament as functions of (1−H0/Hc2).
(a) The amplitude of the normalized superconducting order parameter at the centre of the filament.
(b) The normalized difference between the magnetic field at the centre of the filament and H0,
multiplied by κ2. (c) The Gibbs free energy of the filament Ff il (per unit of length) in units of
ξ2(T )H 2

c /8π with respect to that of the normal metal in a magnetic field equal to H0.

In this approach, all characteristics of the filament are uniquely determined by the value of the
applied magnetic field H0.

In figures 2(a)–(c) we display various quantities, plotted versus (1−H0/Hc2). Figure 2(a)
shows the amplitude of the normalized GL order parameter at the centre of the filament; in
figure 2(b) we have plotted the product κ2[1 −H(0)/H0], and in figure 2(c) we show the free
energy of the filament Ff il . It may be seen that while ψ(0) and Ff il are independent of κ , the
expulsion of the magnetic field from the centre of the filament, [1 − H(0)/H0], is inversely
proportional to κ2, i.e., the magnetic moment of the filament rapidly decreases with increasing
κ . According to figure 2(c) the free energy of the filament with respect to that of the normal
metal is negative and it vanishes at H0 = Hc2. This obvious but gratifying result demonstrates
that the superconducting phase can only be stable in magnetic fields below Hc2.

So far, we have considered a single superconducting filament in a normal-metal matrix
and we now consider the interaction between the filaments. Because the current density in
the normal metal between the filaments is zero, there is no long-range interaction between
them and the contribution to the free energy due to filament–filament interaction is zero unless
the neighbouring filaments are very close to each other. In order to show that the short-range
interaction between the filaments is repulsive, we introduce the velocity of superconducting
electrons vs = js/(2eψ2), where js is the supercurrent, c is the speed of light, and e is
the electron charge. In our case vs increases with the distance from the axis of the filament
approximately proportionally to r . The velocities vs arising from the neighbouring filaments
have opposite directions in the space between them. Because vs cannot have discontinuities
in the superconducting phase, the filaments cannot merge, but must always be divided by a
boundary where the order parameter4 ψ ≡ 0. The situation in the boundary region is very
similar to that arising in the centre of the Abrikosov vortex where vs also changes its sign,
requiring that ψ = 0 along the vortex axis.

4 The fact that superconducting domains in the mixed state of the type-II superconductor cannot merge into one
may be even more clearly demonstrated if we consider two superconducting planes instead of filaments. We choose
the vector potential A = 0 along the boundary between the planes and the order parameter in its complex form. In
this case vs is proportional to ∇φ, where φ is the phase of the order parameter. Because ∇φ changes its sign if
we go from one superconducting plane to the other, it is clear that the order parameters of these two planes cannot
be forced to merge. Superconducting planes, however, are unstable against the formation of a system of Abrikosov
vortices between them. The distance L between the vortices may be found from the condition L∇φ = π . In the case
of superconducting filaments, such boundary vortices cannot be formed because the phase difference �φ along the
filament–filament boundary is much less than π .
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Figure 3. Profiles of the order parameter for different values of ψ(0) and H0/Hc2 = 0.9. In this
case, as well as for a single filament, these profiles are independent of κ for 10 < κ < 100. The
inset shows the total free energy of the system of filaments F = nF̃f il as a function of their density.
The solid curve is a guide to the eye.

Because the number of filaments in the sample is only limited by a short-range repulsion,
they are expected to form a rather dense triangular configuration as is illustrated in the inset
to figure 4(b). In order to analyse the resulting profile of an individual filament, we again use
equations (1) and (2) but, in order to satisfy the condition ψ = 0 between the filaments, the
boundary condition dψ/dr|r→∞ = 0 is abandoned. Several solutions of the GL equations are
shown in figure 3. In this case, the order parameter vanishes with a non-zero derivative and we
may introduce the radius of the filament as the value of r = D/2 at the point where ψ = 0.

As may be seen in figure 3, the diameter D of the filament decreases with decreasing value
of ψ(0). The important consequence of the GL equations is that the diameter D of the filament
cannot be smaller than a certain minimal valueDmin. The only solution of the GL equations for
D � Dmin is ψ(r) ≡ 0. The dependence of Dmin on (1−H0/Hc2) is shown in figure 4(a). We
note that also for superconducting lamellae a minimal thickness δmin exists. The dependence
of δmin on the applied magnetic field is shown in figure 4(a), as well. Both Dmin and δmin

decrease with decreasing magnetic field. It has been shown that δmin|H0=0 = πξ(T ) [3]. The
corresponding value of Dmin|H0=0 ≈ 4.81ξ(T ).

In the following we assume that the distance between the filaments is equal to their diameter
D, as is shown in the inset to figure 4(b). For a triangular lattice, the density n of filaments is
thus n = 2/(

√
3D2). In order to evaluate the equilibrium density of filaments, we plot the total

free energy of the system of filaments F = nF̃f il , where F̃ is the Gibbs free energy calculated
for solutions of the type shown in figure 3, versus n as is illustrated in the inset to figure 3.
The position of the minimum on this curve corresponds to the equilibrium value of n. The
magnetic field dependence of the equilibrium diameter Deq of the filaments is presented in
figure 4(a). As may be seen, Deq , which is the period of the triangular lattice of the filaments,
is considerably larger than the equivalent quantity d for the vortex structure.

The dependencies of ψ(0) and (1 − H(0)/H0) on the magnetic field for an equilibrium
filament configuration practically coincide with those calculated in the single-filament
approximation for H0/Hc2 � 0.5 (see figures 2(a) and (b)).

Figure 4(b) shows the free energy of the system of filaments as a function of (1−H0/Hc2).
The energy was calculated assuming that the filaments are cylindrical. We have to adopt
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Figure 4. (a) The minimal thickness of superconducting lamellae, δmin, the minimal diameter of
the superconducting filament, Dmin, and the equilibrium value Deq versus (1 − H0/Hc2). The
period d of the vortex structure is shown as the solid curve. The dashed curves are guides to the
eye. (b) The Gibbs free energy F of the system of filaments (per unit of volume) with respect to
that of the normal metal in a magnetic field equal to H0. The inset represents the triangular lattice
of superconducting filaments.
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Figure 5. The maximum amplitude of the order parameter for the equilibrium configuration of
filaments and for the vortex lattice. The data for the vortices is taken from [4].

this approach, in order to use one-dimensional GL equations which are the basis of our
consideration. It is obvious, however, that, because of their mutual interaction,the filaments
should adopt a hexagonal rather than a circular cross-section. We note, however, that this
simplification may only result in free-energy values that are slightly higher than the actual
ones.

As we have argued, the system of quantized vortices is not the only way to realize the
mixed state of type-II superconductors, which may also be established by an ensemble of
superconducting filaments. At low magnetic fields, where the equilibrium diameter of filaments
Deq � λ(T ), the filaments are unstable against the formation of a vortex line in the centre
of the filament. In order to identify the stable arrangement in higher fields, the free energies
for these two configurations should be compared. To our knowledge the only study in which
the two-dimensional GL equations have been solved for the vortex lattice is presented in [4].
Figure 5 shows the results of our calculations of the order parameter amplitude ψmax versus
(1−H0/Hc2) for filaments, together with the results of [4]. In the high-magnetic-field limit, the
term proportional to the magnetic moment in the Gibbs free energy may be neglected and the
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density of the free energy reduces to F ≈ −ψ4(r)H 2
c /8π . As may clearly be seen in figure 5,

the amplitude of ψ for the vortex lattice is considerably smaller than that for the filaments
and the ratio ψmax(filaments)/ψmax(vortices) increases with increasing magnetic field. Thus,
in sufficiently high magnetic fields, the free energy for the configuration of superconducting
filaments is expected to be lower than that for the vortex lattice.

The properties of a mixed state consisting of superconducting filaments are quite different
from those of the Abrikosov vortices. First, because the filaments are always separated by
normal-conducting regions, the sample resistance for currents perpendicular to the direction
of the magnetic field never vanishes and the true zero-resistance superconducting state may be
achieved only after the transition to the vortex structure. Second, in the case of filaments, the
magnetic flux faces no barriers to moving in or out of the sample and the magnetization of the
sample must be reversible, independent of whether the filaments are pinned or not.

The analysis presented in this letter shows that, in magnetic fields close to Hc2, the mixed
state may well consist of a triangular lattice of superconducting filaments separated by regions
where the superconducting order parameter ψ = 0. With decreasing external magnetic field,
the configuration of superconducting filaments necessarily has to undergo a transition to the
conventional mixed state, involving Abrikosov vortices. The value of the transition field is
determined by the free-energy balance between these two configurations which cannot be
determined without more precise calculations of the free energy for both cases. The transition
from one type of mixed state to the other involves a complete change of topology and must be
accompanied by discontinuities in both the resistivity and the magnetic moment of the sample.
We also expect some hysteresis, as well as a latent heat, dictated by the discontinuity of the
magnetization. In other words, this transition is expected to exhibit all the features of a first-
order phase transition. Such transitions are observed in high-temperature superconductors at
H < Hc2 and are usually attributed to the melting of the vortex lattice [5–8].

We wish to thank R Monnier for numerous stimulating discussions.
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